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ABSTRACT

The Early Data Release from the Sloan Digital Sky survey provides one of the

largest multicolor photometric catalogs currently available to the astronomical commu-

nity. In this paper we present the �rst application of photometric redshifts to the � 6

million extended sources within these data (with 1.8 million sources having r0 < 21).

Utilizing a range of photometric redshift techniques, from empirical to template and

hybrid techniques, we investigate the statistical and systematic uncertainties present

within the redshift estimates for the EDR data. For r0 < 21 we �nd that the redshift

estimates provide realistic redshift histograms with an rms uncertainty in the photo-

metric redshift relation of 0.035 at r0 < 18 and rising to 0.1 at r0 < 21. We conclude

by describing how these photometric redshifts and derived quantities, such as spectral

type, restframe colors and absolute magnitudes, are stored within the SDSS database.

We provide sample queries for searching on photometric redshifts and list the current

caveats and issues that should be understood before using these photometric redshifts

in statistical analyses of the SDSS galaxies.

Subject headings: galaxies: distances and redshifts | galaxies: photometry| methods:

statistical
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1. Introduction

From their inception (Koo (1985); Connolly et al. (1995); Gwyn & Hartwick (1996); Sawicki,

Lin & Yee (1997); Hogg et al. (1998); Wang, Bahcall & Turner (1998); Fern�andez-Soto et al.

(1999); Ben��tez (2000); Csabai et al. (2000); Budav�ari et al. (2000)) photometric redshifts have

been seen as an eÆcient and e�ective means of studying the statistical properties of galaxies and

their evolution. They are essentially a mechanism for inverting a set of observable parameters (e.g.

colors) into estimates of the physical properties of galaxies (e.g. redshift, type and luminosity). To

date photometric redshifts have typically been employed on small multicolor photometric surveys

such as the Hubble Deep Field (HDF, Williams et al. (1996)). While these applications have

demonstrated the power of the estimated redshifts in studying galaxy evolution they have an

underlying limitation. The cosmological volumes probed by the narrow pencil beam surveys are

small and consequently it is not clear if these data provide a representative sample of the Universe.

With the development of large wide-�eld survey cameras this volume limitation can be overcome

and large, statistically complete studies of the properties of galaxies can be undertaken.

One of the largest ongoing multicolor photometric survey currently underway is the Sloan

Digital Sky Survey (SDSS; York et al. (2000)). This imaging and spectroscopic survey provides an

ideal base from which to apply photometric redshifts to large samples of galaxies. In the Early Data

Release (Stoughton et al. (2002)) there are over 6 million galaxies, an order of magnitude increase

in sample size when compared to existing public multicolor surveys. From these galaxies there are

approximately 35,000 galaxies with published spectroscopic redshifts from which to determine the

statistical and systematic uncertainties within the SDSS photometric redshift relation.

In this paper we describe the �rst application of photometric redshifts to the SDSS data. We

provide a background to the redshift estimation techniques but do not go into the technical details

of the individual methods. We focus on providing the astronomical community with details of how

to use the photometric redshifts within the SDSS EDR database and emphasize the caveats and

limitations present within the current photometric redshift catalog (due to photometric errors and

uncertainties in the SDSS zeropoints). We plan to have a more detailed analysis of systematic

errors on the soon outcoming Data Release 1, where most of these problems will be eliminated.

Sample queries for the EDR database are provided in Section 6.1 together with details of value

added parameters that can be derived from the photometric redshifts such as restframe colors,

k-corrections and absolute magnitudes.

2. The Early SDSS Data Release

In this section we provide a brief description of the Early Data Release (EDR; Stoughton

et al. (2002)) of the SDSS and introduce the subsets of the data that will be used throughout this

paper. The EDR has 5 band photometry (Fukugita et al. 1996; Gunn et al. 1998; Smith et al.

2002; Hogg et al. 2001; Pier et al. 2002) for over 6 million galaxies. Out of which 1.8 million
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galaxies have r0 < 21. The �ve �lters of the u0; g0; r0; i0; z0system have e�ective wavelengths of

3540, 4750, 6222, 7632, and 9049�Arespectively, and the goal of the survey is to achieve a level

of photometric uniformity and accuracy such that the systemwide rms errors in the �nal SDSS

photometric catalog will be less than 0.02 mag in r0, 0.02 mag in r0�i0and g0�r0, and 0.03 mag in

u0�g0and i0�z0, for objects bluer than an M0 dwarf. All analyses in this paper are based on the

dereddened model magnitudes in the EDR data set. A relatively small subset of these galaxies,

>30,000, have measured redshifts. The objects for spectroscopic observation were selected using

the SDSS's target selection algorithm, which is discussed in detail in Stoughton et al. (2002) and

Strauss et al. (2002). This selection algorithm results in two subsets of the SDSS data, a main

galaxy sample and a luminous red galaxy sample (LRG; Eisenstein et al. (2001)). The main galaxy

sample contains 27,797 galaxies with a mean redshift of z = 0:116 and a photometric limit of

r0 = 18. The LRG sample was selected from galaxies with colors similar to that of an elliptical

galaxy and contains 6698 galaxies with a mean redshift of z = 0:227 (though extending out to

z > 0:5). The redshift histograms of these two subsets of the data are given in Figure 1 which

demonstrate that the main sample should provide a good training/test set out to z = 0:2 and the

LRG data set out to z = 0:5.

In order to test the accuracy of the photometric redshifts derived from the SDSS we supplement

the SDSS redshifts with a subset of galaxies selected from published redshift catalogs. At low

redshift and for bright magnitudes, the 2 degree Field (2dF) redshift survey (Colless et al. (2001))

contains 5642 galaxies for which we have matching SDSS photometry. These galaxies have a limiting

magnitude of approximately r0 = 18:5 and a mean redshift of z = 0:112. The redshift range sampled

by these galaxies is, therefore, well matched to that of the SDSS redshift catalog with a limiting

redshift of approximately z = 0:2. At higher redshifts and for fainter magnitudes, the Canada

Network for Observational Cosmology (CNOC2; Yee et al. (1996)) survey has magnitude limit

of approximately r0 < 21:0 with a mean redshift of z = 0:274 and an upper redshift limits of

approximately z = 0:7. The photometric depth of the 2697 galaxies within the the CNOC2 sample

provides not just a test of the accuracy of the photometric redshifts but also a measure of how the

redshift uncertainties scale with magnitude limit. We designate these \blind" test samples as 2dF

for the low redshift samples and CNOC2 for the CNOC2 data.

In the following sections we will use the main EDR and the EDR LRG samples as training

sets and all of the above data sets as test sets.

3. Standard Photometric Redshift Techniques

A wide range of techniques have been employed in the literature to estimate redshifts of

galaxies with broadband photometric colors. Approaches have ranged from the purely empirical

relations to comparisons of the colors of galaxies to the colors predicted from galaxy spectral

energy distributions. Each approach has its own set of advantages and disadvantages. Empirical

approaches, where the color-redshift relations are derived directly from the data themselves, are
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relatively free from possible systematic e�ects within the photometric calibration. As such, they

provide a simple measure of the statistical uncertainties with the data and can demonstrate the

accuracy to which we should be able to estimate redshifts once we can control the systematic errors.

Their underlying disadvantage is that we can typically only apply these relations to galaxies with

colors that lie within the range of colors and redshifts found within the training set. Template

based techniques are free from the limitation of a training set and can be applied over a wide

range of redshifts and intrinsic colors. They rely, however, on having a set of galaxy templates that

accurately map the true distribution of galaxy spectral energy distributions (and their evolution

with redshift) and on the assumption that the photometric calibration of the data is free from

systematics.

In this section we consider both empirical and template based approaches to photometric

redshift estimation for SDSS data. We demonstrate the redshift accuracy that it should be possible

to achieve from the EDR sample and describe the current limitations of using standard galaxy

spectral energy distributions.

3.1. Empirical Redshift Estimation Methods

We consider here the standard empirical redshift estimation techniques that have been used in

the literature (Connolly et al. (1995); Wang, Bahcall & Turner (1998); Brunner, Connolly & Szalay

(1999)) and develop a new technique based on a hierarchical indexing structures (kd-trees,Moore

(1995)). One of the �rst successful empirical methods is based on �tting a functional form for the

relation between the spectroscopic redshift of a galaxy and its colors or magnitudes (Connolly et al.

(1995)). This function is typically a 2nd or 3rd order polynomial. Figure 2 shows the photometric

vs. the spectroscopic redshifts using the EDR main galaxy and LRG spectroscopic samples. As the

size of the training set is large (> 30; 000) when compared to the number of the �tted parameters

(21), we can expect that this �t will work for other objects with the same dispersion as seen in

Figure 2 (as long as the data are selected over the sample color and redshift range as the training set).

The dispersion within this photometric redshift relation is �z = 0:027 (see Table 1 for comparision

with other values). One possible uncertainty within this technique comes from the fact that the

�tting function is just an approximation of the, possibly, more complex relation between the colors

and the redshift of a galaxy. We would, therefore, expect the �tting function to accurately follow

the redshift-color relation over a narrow range of redshift. A technique to avoid this, is to use

separate functions in di�erent redshift (Brunner, Connolly & Szalay (1999)) or color ranges.

A second, and possibly the simplest, empirical estimator is the nearest neighbor method. For

a test galaxy, this �nds the galaxy within the training set with the smallest distance in the color (or

magnitude) space (weighted by the errors). The redshift of this closest match is then assigned to

the test galaxy. In the ideal case the training set contains suÆcient galaxies that for each unknown

object there is a close neighbor. In Figure 3 we show, that redshift estimation error increases with

the distance from the nearest neighbor in color space. The larger the dataset the more accurate
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this method becomes, as long as that all galaxy types are represented in the training set. From the

technical viewpoint, larger training sets mean that the search time increases so one has to use an

eÆcient multidimensional search technique (e.g. kd-trees) instead of a standard linear search. The

comparison between the estimated and spectroscopic redshifts for the nearest-neighbor technique

is given in Figure 2. The dispersion about this relation is �z = 0:033.

A natural limitation of the nearest neighbor technique is that a large number of training

galaxies alone is not enough, they must cover the range of the colors of the unknown objects in

a more or less uniform way. Unfortunately, this is usually not the case. To resolve this problem

one can search for more than one nearest neighbor and apply an interpolation or a �tting function.

This also helps to resolve a second problem, namely that because of the �nite number of objects in

the training set, the photometric redshifts will have discrete values making them problematic to use

in some statistical studies. We have created a hybrid version of the above two empirical methods:

we partitioned the color space into cells, containing the same number of objects from the training

set, using a kd-tree tree (a binary search tree (Bentley 1979)). In each cell we �t a second order

polynomial. The results together with a demonstration of a 2-dimensional version of the kd-tree

partitioning of the EDR training set are given in Figure 4. The dispersion about this relation is

�z = 0:023.

For each of these approaches the resulting dispersion in the photometric redshift relation

is found to be approximately 0.03 (see Table 1 with the hybrid method being marginally more

accurate. As these empirical approaches do not rely on the absolute photometric calibration of

the data (other than the calibration should be stable across the data sets) they are somewhat

insensitive to systematic errors in the data. If the SDSS redshifts (or external redshift samples)

sampled the full redshift range of the data to the limit of the survey these empirical techniques

would provide an ideal mechanism for deriving redshift estimates for the SDSS. As the redshift

range of the spectroscopic samples are fairly limited the application of these techniques to the full

data set is non-trivial. We can, however, use these results to demonstrate that accuracy we should

be able to derive from the template based techniques (once any systematics within the data are

accounted for) should be �z � 0:03 at r0 < 18.

3.2. Template Based Redshift Estimation Methods

As noted previously, the advantage of using templates to estimate redshifts of galaxies (Koo

(1985); Gwyn & Hartwick (1996); Sawicki, Lin & Yee (1997); Connolly et al. (1999); Fern�andez-Soto

et al. (1999); Ben��tez (2000); Bolzonella, Miralles & Pell�o (2000); Budav�ari et al. (1999, 2000);

Csabai et al. (2000)) are numerous. This approach simply compares the expected colors of a galaxy

(derived from template spectral energy distributions) with those observed for an individual galaxy.

The standard scenario for template �tting is to take a small number of spectral templates T (e.g. E,

Sbc, Scd and Irr galaxies) and choose the best �t by optimizing the likelihood of the �t as a function

of redshift, type and luminosity p(z; T;L). Variations on this approach have been developed in the
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last few decades including ones that use a continuous distribution of spectral templates enabling

the error function in redshift and type to be well de�ned.

A representative set of spectrophotometrically calibrated spectral templates is not easy to ob-

tain. One problem with measured spectra is, that to calibrate them spectrophotometrically over

the full spectral range is non-trivial. A second problem is that, because of the redshift of a galaxy,

we need spectra over a wavelength range that is wider than the range of our optical �lters (3000{

12000�A). Such spectra cannot currently be measured by a single spectrograph. Third, even if we

could measure calibrated spectra over the required range, spectrographs, especially modern multi-

�ber ones, usually sample only the central region of the galaxy while photometric measurements

integrate over the full spatial extent of a galaxy. The alternative to empirical templates is to use the

outputs of spectral synthesis models. The accuracy of spectral models are improving (Bruzual &

Charlot 1993) but not yet as accurate as direct measurements of galaxy spectra. Modern surveys

will improve on this situation, e.g. the SDSS will measure spectrophotometrically calibrated spectra

for a million objects in the 3800{9200�A range at a resolution R = �=�� of about 1800, but to-date

there does not exist an optimal set of galaxy spectral templates.

The most frequently used set of spectral energy distributions (SEDs) used in photometric

redshift analyses are those from Coleman, Wu & Weedman (1980, hereafter CWW) (see also Bol-

zonella, Miralles & Pell�o (2000)). In Figures 5 and 6 we demonstrate the results of the template

�tting technique using the CWW templates and a set of SEDs from the spectral synthesis models

of Bruzual & Charlot (1993). The dispersion about this relation is 0.062 and 0.051 for the CWW

and BC templates respectively. While this is only a factor of two worse than that achieved by the

empirical methods there appear to be systematic deviations within these photometric redshift rela-

tions. The CWW templates produce a photometric redshift relation where the majority of galaxies

have a systematically lower redshift than that given by the spectroscopic data (by approximately

0.03 in redshift) and there exists a broad tail of galaxies for which the photometric redshifts are

systematically overestimated. For the BC templates the galaxy redshifts tend to be systemati-

cally underestimated (with this e�ect becoming more pronounced as a function of redshift out to

redshifts z=0.3).

An improvement over standard template methods, which rely uniquely on the galaxy colors, is

the introduction of magnitude priors within a Bayesian framework (Ben��tez (2000)). The redshift

distribution of the main EDR sample is well �tted by the relationship p(z) / z2exp[�(z=zm)
1:5]

for i . 18, and a continuous prior can be constructed by we measuring zm in 5 di�erent magnitude

bins and interpolating. Since the EDR spectroscopic sample redshift distribution is 'contaminated'

by LRGs at faint magnitudes and turns bimodal, we have assumed a at redshift/magnitude prior

for i & 18. Using this magnitude prior we run Bayesian estimation, with two further re�nements:

a) setting the minimal photometric error in each band to 0.03, which mimics the intrinsic uctu-

ations in the colors of galaxies described by a same template and produces more realistic redshift

likelihoods and b) using linear interpolation between the main CWW types to improve the color

resolution. Using this setup, the dispersion for the CWW templates without using any prior de-
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creases from 0.06 to 0.05, with an o�set of 0.0156; introducing the prior described above further

decreases the dispersion to �z = 0:0415 (see Figure 7) for the whole sample, but an o�set of 0.0144

still remains.

It is clear from these tests that while the template �tting methods should be directly applicable

to the SDSS EDR data there remain signi�cant systematics within either the templates or the

photometric calibrations (or both) that will add artifacts into any photometric redshift relation.

We must, therefore, recalibrate the template spectra to minimize these systematic e�ects.

4. Hybrid Photometric Redshift Techniques

Recently new hybrid techniques have been developed to calibrate template spectral energy

distributions (SEDs) Csabai et al. (2000); Budav�ari et al. (1999, 2000, 2001a) using a training set

of photometric data with spectroscopic redshifts. These combine the advantages of the empirical

methods and SED �tting by iteratively improving the the agreement between the photometric

measurements and the spectral templates. The basic approach is to divide a set of galaxies into

a small number of spectral classes (using the standard template based photometric redshifts) and

then to adjust the template SEDs to match the mean colors of the galaxies within these spectral

classes. By repeating this classi�cation and repair procedure the template spectra converge towards

the observed colors. In this paper we will not review the details of these techniques but direct the

reader to Csabai et al. (2000); Budav�ari et al. (1999, 2000, 2001a) for a full description of the

algorithms. As we shall show in the following sections the application of these techniques yields

more reliable photometric redshifts for the SDSS EDR catalog than the standard template �tting.

4.1. A Single Template: The Luminous Red Galaxy Sample

In addition to providing a training set for redshift estimation within the SDSS data the LRG

sample is extremely useful in identifying systematic uncertainties within the SDSS photometric

system. The LRG galaxies have a strong continuum feature, namely the break at around 4000�A.

Due to the depth of this feature, photometric redshifts are easily estimated for these galaxies. In

addition, due to the high luminosity of these galaxies they can be observed, spectroscopically over

a larger redshift range than the main galaxy sample. Systematics within the photometric data can,

therefore, be identi�ed as this spectral feature passes through the �lters as a function of redshift.

In fact, we can simply use a single SED for the LRG sample to test how we must optimize the

template spectra to accurately represent the observed colors.

For the 6698 LRG galaxies we start with an initial template spectrum selected from the CWW

elliptical spectrum and apply the training techniques of Budavari et al (2000). In Figure 8 we

show the original CWW elliptical spectrum together with our reconstructed template. From these

spectra we can see that in oder to represent the colors of the LRGs we need a template spectrum that
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is redder than the standard CWW elliptical. To demonstrate, how well these respective spectral

templates cover the photometric observations, we have plotted, in Figure 9, the colors of the EDR

LRG galaxies together with the traces of the original and repaired spectral templates. The color-

redshift relation for the repaired spectrum clearly traces the locus of the LRG galaxy sample more

accurately than the original CWW SED. The most obvious improvement in the comparative colors

is found in the u0�g0 and i0�z0 colors.

Although the repair procedure does not optimize directly for photometric redshifts, the im-

provement in the match between the observed and predicted colors should lead to an improved

photometric redshift relation for the LRG sample. Figure 10 compares the performance of the

photometric redshift estimators utilizing the two original and repaired template SEDs. The repair

procedure decreases the overall scatter in the redshift relation from �z = 0:031 to �z = 0:029. The

main improvement is, however, that the systematic underestimation of the redshift, at redshifts

z > 0:2, is reduced. There remains a feature in the redshift relation at z � 0:4, an increase, by a

factor of two, in the dispersion. This arises due to the fact that there exists a degeneracy in the

u0 � g0 vs g0 � r0 colors within red galaxies at a redshift of z � 0:4 (the color-color tracks loop on

top of each other). The degeneracy is a result of the Balmer break shifting between the g0 and r0

�lters making it diÆcult to estimate the exact redshift (Budav�ari et al. (2001b)). This problem

cannot be removed by using better template spectra.

4.2. The Distribution of Galaxy Types: The Main galaxy Sample

The entire sample of the SDSS galaxies (including the LRGs) poses a more diÆcult question

due to the spectral composition of the data. Spectral variations cannot be neglected and, in

fact, one would like to get a continuous parameterization of the spectral manifold. To accomplish

this we adopt a variant of the ASQ algorithm (Budav�ari et al. (2001a)). First we reconstruct

a small number of discrete SEDs using the techniques described previously and then we use an

interpolation scheme to provide a continuous distribution of spectral types that evenly sample

between the discrete spectra.

The training set consists of all galaxies with spectroscopic redshifts and the 5 band SDSS

photometry. The large number of galaxies is very promising but the spectral resolution of the

reconstructed templates also depends on the redshift baseline of the input galaxy training set. This

redshift range is signi�cantly smaller than, for example, those derived from the Hubble Deep Field

(Hogg et al. (1998); Budav�ari et al. (2000)). Ideally, one would like to have a training set that

uniformly samples the color space to ensure that no extra weight is assigned to any particular

type of galaxy. The limited color range of the galaxies with spectroscopic redshifts will, therefore,

ultimately limit the accuracy of our �nal redshift relations.

The iterative ASQ method was applied to the initial set of four CWW spectra. The spectral

templates are found to converge rapidly, within a few iterations. After 10 iterations, the repaired
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templates yield photometric redshifts that are shown in the top panels of Figure 11. The left panel

shows all galaxies assigned to the reddest template and the galaxies assigned to the remaining

three templates are given on the right panel. The rms in the red and blue sample are �z = 0:028

and 0:05, respectively. This plot should be compared with the redshift relations derived from the

standard CWW templates as shown in Figure 5. The training of these templates removes both the

systematics within the data and reduces the dispersion about the photometric-redshift relation.

The large estimation error for the late type galaxies partly caused by the small number of

discrete templates used in the redshift estimation. We can improve on our estimates if we derive

an interpolation scheme that provides a �ner sampling of the distribution of late type spectral

templates. Figure 12 illustrates the 1D continuous spectral manifold derived from the discrete SEDs

by plotting equally spaced (in type) interpolated spectra using a simple spline interpolation. Based

on the following tests this simple interpolation scheme provides suÆcient accuracy for mapping the

color distribution of late type galaxies.

The �rst test of the interpolation scheme was a simple sanity check of the type histogram.

If the interpolated spectra are not physical, we expect to see humps at the basis templates (i.e.

the colors of the majority of galaxies will be better matched to the original templates than the

interpolated templates). For this test, we used the known redshift of each galaxy in the training

set and only �t the spectral type (and apparent luminosity). In Figure 13 we show this interpo-

lated type histogram. The smooth transition between interpolated types shows no evidence for

any discreteness in assigning a spectral template to an individual galaxy. The second test of the

interpolation was to determine if the interpolated templates would evolve if we applied the ASQ

training algorithm. Fixing the four basis trained SEDs, we introduced three interpolated classes

at the center of the intervals between these spectral types. We �nd no signi�cant change in the

spectral properties of these interpolated spectra as a function of iteration of the training algorithm.

The redshift estimates based on the continuous 1D type parameter are shown in the bottom

panels of Figure 11 for both the early- and late-type subsamples (left and right, respectively).

Compared to the top panels of the discrete version (discussed previously), the new estimates seem

to be superior for the intrinsically blue subset and slightly worse of the early-types.

For early-type galaxies it would be better to use the original discrete template set to avoid the

systematic overestimation around z = 0:2 and z = 0:3. Since we want to have a simple estimation

for the spectral type, we would like to avoid to use a separate (discrete) template set for early-type

galaxies, so we use the above scheme keeping in mind the systematic errors, and working on a

better interpolated template set. Note, that SDSS will measure spectroscopic redshift for most of

the luminous early-type galaxies, so the number of objects where this problem arises is somewhat

smaller than in our test sample. Though for the less luminous early type galaxies the above problem

still exist.

In terms of rms values of the scatter this translates to an increase from

sigmaz = 0:028 to 0:029 for the red galaxies and a decrease from �z = 0:05 to 0:04 for the blue
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ones. To quote an rms for the entire training set would not be to meaningful because it depends

on the ratio of the number of early- and late-type galaxies. For the main SDSS galaxy sample the

scatter is �z = 0:035. We will use the above template �tting method with repaired interpolated

templates to create the EDR photometric redshift catalog.

5. Comparisons with Independent Redshift Samples

5.1. The 2dF and CNOC2 Redshift Samples

In the above sections we have used data from the same subsets for training and testing. We

now perform a blind test using the independent data sets. Details of the 2dF and CNOC2 data

sets are given in Section 2. Figure 14a compares the spectroscopic and photometric redshifts for

the 2dF spectroscopic sample. The dispersion within the photometric-redshift relation for these

data is, �z = 0:043. This compares to the dispersion in the relation for the full SDSS sample of

�z = 0:035. The increase in the dispersion arises from two e�ects. The r0 band magnitudes of

the 2dF data are intrinsically fainter than the SDSS spectroscopic sample (by approximately 0.2

magnitudes) and the 2dF data are selected based on their Bj photographic magnitudes which will

provide an intrinsically bluer galaxy sample than the r0 selected SDSS data. As the dispersion in

the redshift relation increases with limiting magnitude and for blue galaxies the di�erence in the

observed photometric redshift relation is not surprising.

To determine how well the templates extrapolate to higher redshift data we apply the pho-

tometric redshifts to the CNOC2 data set (with a redshift range 0 < z < 0:7 and a magnitude

limit of r0 < 21:0) As we can see in Figure 14 the dispersion in the relation increases for the fainter

magnitude sample due to the increase in photometric error. The average estimation error for the

whole set is �z = 0:084. If we consider only those galaxies with 17:8 < r0 < 19:5, the uncertainty

in the redshift estimates decreases to �z = 0:061. In Figure 15 we show the absolute deviation

between the photometric and spectroscopic redshifts for the CNOC2 galaxy sample as a function

of r0. The cumulative rms of these data (as a function of r0) is shown by the solid line. For r0 < 21

the rms uncertainty about this relation is 0.1 in redshift.

6. The Early Data Release Photometric Redshift Catalog

6.1. Selecting Galaxies From the EDR Database

The goal of our analysis has been to obtain photometric redshifts for all SDSS galaxies in the

Early Data Release. We have, therefore, created the �rst EDR photo-z catalog (version 1.0) which

has now been included in the publicly available EDR database at http://skyserver.sdss.org/.

We used the template �tting method with repaired interpolated templates 4 to estimate pho-
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tometric redshifts in the above public catalog. Though the empirical methods (see 3.1) give smaller

estimation error, we have chosen to use the template �tting method since it estimates not just red-

shift, but spectral type and restframe magnitude, too. Also we hope, that with the accumulation of

more precisely calibrated data in further SDSS releases, the disadvantage of this method decreases.

The photometric redshift table (see Table 2 for the list of parameters) in the database has more

than 6 million entries, one for every galaxy in the EDR. Each entry contains the unique object ID

(objID, for quick cross-matching), the most likely redshift (z) and type (t). The uncertainties of

redshift and type calculated from the 68% con�dence regions of the �t assuming Gaussian errors.

Note that the true error distribution for higher redshift object is not known, and probably not

Gaussian. The elements of the covariance matrix are stored in the database and represented by

c zz, c tt, c tz. The errors in columns zErr and tErr are simply taken from the diagonal elements

of the covariance matrix. The �2 value of the �t (chiSq) measures the absolute `goodness' of the

�t. The catalog contains a preliminary quality ag (quality), which scales between zero and �ve

where the larger the number the more con�dent the photometric redshift. This ag is assigned to

objects in the process of �tting the con�dence region and seems to correlate with the rms of the

photometric and spectroscopic redshifts. In the current version this correlation is quite weak, we

would like to improve the calculation of this ag in the next version.

In addition to the redshift estimates physical parameters derived from the estimated redshift

are also stored within the database. These include the distance modulus (dmod) for the standard

�CDM cosmology (
M = 0:3, 
� = 0:7, h�1 units), restframe colors (rest ug, rest gr, rest ri,

rest iz) and K-corrections (kcorr u, kcorr g, kcorr r, kcorr i, kcorr z) derived directly from

the templates and the restframe absolute magnitudes (absMag u, absMag g, absMag r, absMag i,

absMag z) as computed from the distance modulus and K-correction,

M = m� DM(z)�K(t; z):

Access to these parameters is straightforward through the Structured Query Language (a.k.a.

SQL). A sample query to extract the objId and photometric redshift of 5 galaxies in the redshift

range of 0:2 < z < 0:3 would look like this:

select top 5 objId, z

from PhotoZ

where z>0.2 and z<0.3

All parameters stored within the SDSS database (including the derived parameters) can be

searched upon.
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6.2. Caveats and Limitations of the Current Photometric Redshifts

While, as the comparisons between the photometric and spectroscopic redshift show, the cur-

rent implementation of SDSS photometric redshifts provide an accurate estimate of the redshifts

there are a number of limitations and caveats pertaining to the EDR data. We describe here the

results of a series of tests of the quality of the SDSS photometry and how these issues a�ect the

accuracy and possible uses of the photometric redshifts in the EDR catalog. We advise any poten-

tial user of the current photometric redshift implementation to be aware of these caveats prior to

undertaking any statistical analysis.

Even though the photometric calibration of the SDSS survey has been shown to be be accurate

to a few percent for the SDSS standard stars, galaxy colors appear to have a slight o�set from SED

based estimated values (Eisenstein et al. (2001)). As part of this analysis of the SDSS EDR data

we compare measured colors not only to the spectrophotometrically calibrated SEDs (e.g. CWW)

but we have also carried out experiments where small o�sets were applied before the re�ning

the template spectra. In this way we can identify systematic photometric o�sets from the mean

deviation of the colors from the SEDs. The g0 band o�set we found is in the same sense as that

given in Eisenstein et al. (2001) but with a smaller amplitude of �g0 � 0:05. All galaxies within

the SDSS catalog had this g0 o�set applied prior to calculation of the photometric redshifts.

Our SED reconstruction algorithm ideally requires a training set with reasonably uniform red-

shift distribution over a large baseline. The SDSS spectroscopic survey delivers excellent quality

data for this kind of analyses. However, the main galaxy sample has a median redshift of approx-

imately 0.1 which does not enable the use photometric data from di�erent bands to constrain the

SEDs at all wavelengths. In principle, if there exist photometric zeropoint uncertainties within the

data, the reconstruction could introduce arti�cial continuum spectral features in the templates that

would make the extrapolation to higher redshifts impossible (in a similar sense to the limitations

of the empirical techniques). The repaired spectral energy distributions show no obvious trace of

such features.

Finally, we consider how the increasing photometric uncertainty at fainter magnitudes a�ect

the redshift histograms. In Figure 16 we show the redshift distributions in di�erent r0 magnitude

bins 16{17, 17{18, 18{19, 19{20 and 20{21. The histograms built in di�erent magnitude bins peak

around values consistent with published redshifts surveys and that move toward higher values as

a function of the magnitude. Beyond a magnitude limit of r0 > 21 artifacts are seen within the

redshift histograms due to the large photometric errors. We, therefore, advise caution when using

the current EDR photometric redshift catalog for galaxies with r0 > 21. Also one should take into

consideration the fact that for some objects the photometric redshift would be negative because

the estimation is based on photometric data with errors, but the algorithm allows only positive

redshift values, so all negative redshifts pile up at z = 0.
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7. Conclusions

We present the �rst application of photometric redshifts to the SDSS EDR data. From a

comparison of the photometric and spectroscopic redshifts we �nd that the rms error within the

redshift relation is 0:035 for r0 < 18 rising to 0.1 at r0 < 21. For magnitude intervals r0 <

21 the photometric redshift relation and redshift histogram are well matched to existing redshift

surveys (with comparable median redshifts and dispersions). Implementing these redshift estimates

in the SDSS EDR database, together with derived quantities such as the absolute magnitudes,

k-corrections and restframe colors, we provide a simple interface to one of the largest publicly

accessible catalogs of photometric redshifts available to the astronomical community. We conclude

by providing a description of the limitations and caveats present within the current photometric

redshift implementation. We caution all users to be aware of these limitations before applying the

EDR photometric redshifts in any statistical analyses.
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Fig. 1.| The spectroscopic redshift histogram for the SDSS main EDR (solid), the EDR LRG

(long dash), the 2dF (short dash) and the CNOC2 sets.
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Fig. 2.| The photometric redshift estimations with the simple empirical methods.
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Fig. 3.| The dependence of redshift average estimation error on the color space distance from the

nearest reference object (solid line). As expected, smaller distances result smaller error. The dashed

line is for the histogram of number of objects with a given nearest neighbor distance. One can see,

that for most of the objects the nearest neighbor is not close enough to get the best estimation.



{ 19 {

Fig. 4.| On the right we plot a 2 dimensional demonstration of the color space partitioning. In

each of these cells we applied the polynomial �tting technique to estimate redshifts. The left �gure

show the results.
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Fig 5 | Photometric redshift estimation using the CWW spectral energy distributions The
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Fig 6 | Photometric redshift estimation using the Bruzual and Charlot spectral energy distribu-
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Fig 7 | Photometric redshift estimation using the Bayesian method The rms dispersion about
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Fig. 8.| The repaired (thick line) spectral template is redder than the original elliptical galaxy

template (thin line).
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Fig 9 | The four SDSS colors of � 6000 red galaxies vs the redshift The color trace of the
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Fig. 10.| Photometric vs. spectroscopic redshifts for the EDR LRG set. On the left �gure we used

the original CWW spectral templates, while in the �gure on the left the templates were repaired.

One can see, that the redshift prediction improves, especially for higher redshifts.
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Fig 11 | Photometric redshifts of intrinsically red (panels on the left) and blue (right panels)
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Fig. 12.| Illustration of the 1D type manifold. A few SEDs are plotted here for a equally spaced

type parameter values. The reddest and bluest SEDs are shown with the thick dark and light grey

curves, respectively.
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Fig. 13.| The distribution of interpolated spectral templates that �t the observed colors in the

EDR main galaxy sample. The smooth distribution shows that no particular spectral template is

preferred (i.e. the galaxies do not fall into a small number of spectral types). This implies that the

spline used to interpolated between the trained spectral energy distributions accurately maps the

distribution of galaxy colors.
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Fig. 14.| Checking the extrapolation capabilities of the photometric redshift estimator: the

predicted vs. the spectroscopic redshift. Left: 2dF set. Right: The CNOC2 set; since most of these

objects are too faint, we show with larger symbols the objects with reasonable SDSS photometry

(17:8 < r < 19:5). Note the di�erent redshift range.
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Fig. 15.|The cumulative rms of the SDSS photometric redshift as a function of limiting magnitude.

The points represent the absolute deviation between the spectroscopic and photometric redshifts

for the CNOC2 sample of galaxies. The solid line is the cumulative rms of the sample as a function

of the r0 magnitude. At a limiting magnitude of r0 < 21 the rms error on the photometric redshift

rises to 0.1.
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Fig. 16.| These redshift distributions are plotted here to show the trend with the apparent r0

band magnitude. As expected, the histograms in the upper �gure are shifted to right as we go with

r0 magnitude binss form 16 < r0 < 17 to 19:5 < r0 < 20:5. The histogram in the lower �gure is

built using all galaxies in the EDR catalog, and has artifacts. We, therefore, advise caution when

using the current EDR photometric redshift catalog for galaxies with r0 > 21.
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Table 1. Errors on Photometric Redshifts

Estimation Method rms log iterated non-outliers

Polynomial 0.0318 0.0277 0.0273 98.0%

Nearest neighbor 0.0365 0.0321 0.0327 98.5%

Kd-tree 0.0254 0.0224 0.0226 98.4%

CWW 0.0666 0.0598 0.0621 99.1%

Bruzual-Charlot 0.0552 0.0501 0.0509 99.2%

Bayesian 0.0476 0.0415 0.0422 98.4%

CWW LRG 0.0473 0.0332 0.0306 97.1%

Repaired LRG 0.0476 0.0319 0.0289 96.5%

Interpolated 0.0451 0.0359 0.0352 97.7%

2dF 0.0528 0.0455 0.0433 97.1%

CNOC2 0.1358 0.0989 0.0842 93.0%

CNOC2 17:8 < r < 19:5 0.0801 0.0614 0.0614 97.1%

Note. | We list 3 di�erent estimated rms values in the Table. The

�rst is the usual standard deviation �rms computed for all galaxies as

de�ned by �2rms = h�z2i, where �z = zspec � zphot. The standard de-

viation is very sensitive to outliers, it is a common trick to assign less

weight to them by de�ning another quantity that measures the scatter

in a more reliable way: �2log =


A2 log

�
1 +�z2=A2

��
where A is a large

number compared to �z. We use A2 = 20��z2med, where �zmed is the

median. Without outliers �rms and �log were basically same, because

� � log(1 + �) for small � values, but large outliers only a�ect the stan-

dard deviation drammatically. Another way of suppressing the e�ect of

outliers is excluding them. The last rms column (�z ; we use this values

in the text) lists the standard deviation for galaxies that are within the

3� limits of the distribution, which often has a value similar to �log. The

very last column of the table shows the fraction of galaxies included in

the 3� limit.
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Table 2. Photometric Redshift Parameters

name type length unit description

pId int 4 - unique Id for photoz version

rank int 4 - the rank of the photoz determination, default is 0

version varchar 6 - the version of photoz code

class int 4 - char describing the object type (galaxy:1, QSO:tbd, ...)

objID bigint 8 - unique ID pointing to PhotoObj table

chiSq real 4 - the chi-square value for the �t

z real 4 - photometric redshift

zErr real 4 - the marginalized error of the photometric redshift

t real 4 - photometric SED type between 0 and 1

tErr real 4 - the marginalized error of the photometric type

ctt real 4 - tt element of covariance matrix

ctz real 4 - tz element of covariance matrix

czz real 4 - zz element of covariance matrix

fitRadius int 4 pixels radius of area used for covariance �t

fitThreshold real 4 - probability threshold for �tting, peak normalized to 1

quality int 4 - integer describing the quality (best:5, lowest 0)

dmod real 4 magnitudes distance modulus for Omega=0.3, Lambda=0.7 cosmology

restug real 4 magnitudes rest frame u-g color

restgr real 4 magnitudes rest frame g-r color

restri real 4 magnitudes rest frame r-i color

restiz real 4 magnitudes rest frame i-z color

kcorru real 4 magnitudes k correction

kcorrg real 4 magnitudes k correction

kcorrr real 4 magnitudes k correction

kcorri real 4 magnitudes k correction

kcorrz real 4 magnitudes k correction

absMagu real 4 magnitudes rest frame u' abs magnitude

absMagg real 4 magnitudes rest frame g' abs magnitude

absMagr real 4 magnitudes rest frame r' abs magnitude

absMagi real 4 magnitudes rest frame i' abs magnitude

absMagz real 4 magnitudes rest frame z' abs magnitude

Note. | The parameters contained in the Photoz Table of the SDSS Science Archive http://skyserver.sdss.org/.

See text for more details.


